
SERVER
MS-SQL

BEGINNER'S GUIDE

1

1.

Contents
1. Introduction to SQL Server ... 4

Overview of database management systems ... 4

Relational DBMS (RDBMS): .. 4

Object-oriented DBMS (OODBMS): .. 4

NoSQL DBMS: .. 4

DBMSs provide many benefits, including: .. 4

Improved data sharing: .. 4

Improved data security: ... 4

Improved data integrity: .. 5

Improved data backup and recovery: ... 5

• History and evolution of SQL Server ... 5

Enterprise Edition: ... 7

Standard Edition: ... 7

Express Edition: ... 7

Developer Edition: ... 7

Web Edition: .. 7

SQL Server on Azure Virtual Machines: .. 7

Per Core Licensing: .. 7

Server + CAL Licensing: .. 7

Azure Hybrid Benefit: ... 7

2. Relational Database Concepts .. 8

Tables: ... 8

Primary key:... 8

Foreign key: ... 8

Normalization: ... 8

Indexes: ... 8

SQL: Structured Query Language (SQL) .. 8

Transactions: ... 8

ACID: ... 8

Tables: ... 9

Columns: ... 9

Rows:... 9

Primary key:... 9

2

Foreign key: ... 9

Normalization: ... 10

Denormalization: ... 10

3. Basic SQL Syntax .. 11

Creating a database: .. 11

Creating a table: .. 11

Inserting data: ... 11

Updating data: ... 11

Deleting data: .. 11

Selecting data: ... 11

4. Data Manipulation Language (DML) ... 14

INSERT: .. 14

UPDATE: .. 14

DELETE: ... 14

5. Data Definition Language (DDL) ... 15

CREATE: ... 15

ALTER: ... 15

DROP: .. 15

6. Querying Multiple Tables ... 16

INNER JOIN: ... 16

LEFT JOIN: .. 16

RIGHT JOIN: ... 16

FULL OUTER JOIN: .. 17

7. Aggregate Functions .. 18

COUNT(): ... 18

SUM(): ... 18

AVG(): .. 18

MAX(): ... 18

MIN(): .. 18

8. Subqueries ... 19

Subquery as a derived table in a FROM clause: .. 19

Subquery as a scalar expression ... 19

9. Indexing ... 20

Types of indexes: ... 20

Creating indexes: ... 20

Maintaining indexes:.. 20

3

Using indexes:.. 20

Monitoring index performance: ... 20

10. Stored Procedures ... 21

Creating stored procedures: .. 21

Advantages of stored procedures: ... 21

Executing stored procedures: .. 21

Modifying and dropping stored procedures: .. 21

Debugging stored procedures: ... 21

11. Views ... 22

Creating views: .. 22

Modifying and dropping views: .. 22

Advantages of views: ... 22

Using views: ... 22

Limitations of views: .. 22

12. Transactions and Locking ... 23

Transaction states:... 23

ACID properties: .. 23

Transaction isolation levels: ... 23

Locking: ... 23

Deadlocks: ... 23

13. Security.. 24

Authentication: .. 24

Authorization: .. 24

Auditing: .. 24

Encryption: .. 24

Compliance: ... 24

4

1. Introduction to SQL Server

Overview of database management systems
A database management system (DBMS) is a software application that enables users to store,

organize, retrieve, and manage data in a database. A database is an organized collection of data that

can be accessed, managed, and updated easily. A DBMS provides a way to manage databases

efficiently and effectively, and it is a critical component in modern information systems.

A DBMS consists of several components, including a database engine, a data definition language

(DDL), a data manipulation language (DML), and a query language. The database engine is

responsible for managing the data and providing access to it. The DDL is used to define the structure

of the database, including tables, fields, and relationships. The DML is used to manipulate the data in

the database, including adding, updating, and deleting records. The query language is used to

retrieve data from the database.

There are several types of DBMS, including:

Relational DBMS (RDBMS): This type of DBMS uses a table-based data model and organizes data

into one or more tables. The RDBMS is the most widely used type of DBMS and is the basis for SQL-

based DBMSs.

Object-oriented DBMS (OODBMS): This type of DBMS stores data in objects rather than in tables.

The OODBMS is designed to handle complex data types, such as multimedia objects, and is used in

applications such as computer-aided design (CAD) and multimedia systems.

NoSQL DBMS: This type of DBMS is designed for handling large volumes of unstructured or semi-

structured data. NoSQL DBMSs do not use the traditional table-based structure of RDBMSs and are

used in applications such as social media, gaming, and e-commerce.

DBMSs provide many benefits, including:

Improved data sharing: A DBMS enables multiple users to access and share data in a controlled

manner.

Improved data security: A DBMS provides security features, such as access controls and

encryption, to protect sensitive data.

5

Improved data integrity: A DBMS enforces data integrity rules, such as referential integrity, to

ensure that data is accurate and consistent.

Improved data backup and recovery: A DBMS provides backup and recovery features to protect

data from loss or corruption.

In summary, a DBMS is a software application that enables users to store, organize, retrieve, and

manage data in a database. DBMSs come in different types, including RDBMS, OODBMS, and NoSQL

DBMS. They provide many benefits, including improved data sharing, security, integrity, and backup

and recovery.

• History and evolution of SQL Server

SQL Server is a popular relational database management system (RDBMS) developed by Microsoft. It

was first released in 1989 under the name "SQL Server for OS/2" and has since evolved into a robust,

enterprise-class database platform used by organizations of all sizes.

Here is a brief overview of the history and evolution of SQL Server:

SQL Server 1.0: The first version of SQL Server was released in 1989 for the OS/2 operating system. It

was based on the Sybase SQL Server engine and was designed to compete with Oracle and IBM's

DB2 database platforms.

SQL Server 4.2: In 1992, Microsoft released SQL Server 4.2 for Windows NT. This version included

several new features, such as stored procedures, triggers, and views.

SQL Server 6.0: In 1995, Microsoft released SQL Server 6.0, which was a major upgrade from the

previous version. It included support for distributed transactions, online backup and restore, and

full-text search.

SQL Server 7.0: In 1998, Microsoft released SQL Server 7.0, which introduced several new features,

including support for data warehousing, OLAP, and data mining. It was also the first version of SQL

Server to include the Enterprise Manager, a graphical management tool.

SQL Server 2000: In 2000, Microsoft released SQL Server 2000, which was a significant upgrade from

the previous version. It included support for XML and HTTP, as well as improved scalability and

performance.

6

SQL Server 2005: In 2005, Microsoft released SQL Server 2005, which introduced several new

features, including support for native XML data, SQL Server Integration Services (SSIS), and SQL

Server Reporting Services (SSRS).

SQL Server 2008: In 2008, Microsoft released SQL Server 2008, which included several new features,

such as support for spatial data, policy-based management, and encryption.

SQL Server 2012: In 2012, Microsoft released SQL Server 2012, which included several new features,

such as support for columnstore indexes, AlwaysOn Availability Groups, and Power View.

SQL Server 2014: In 2014, Microsoft released SQL Server 2014, which included several new features,

such as support for in-memory OLTP, buffer pool extensions, and enhanced AlwaysOn Availability

Groups.

SQL Server 2016: In 2016, Microsoft released SQL Server 2016, which included several new features,

such as support for JSON data, enhanced security features, and support for R language analytics.

SQL Server 2017: In 2017, Microsoft released SQL Server 2017, which included several new features,

such as support for graph data, machine learning services, and enhanced Linux support.

SQL Server 2019: In 2019, Microsoft released SQL Server 2019, which included several new features,

such as support for big data clusters, enhanced security features, and improved performance.

SQL Server has evolved over the years to become a robust, enterprise-class database platform that

supports a wide range of applications and workloads. With each new release, Microsoft has

introduced new features and enhancements to improve performance, scalability, security, and

manageability.

• Editions and licensing options

Microsoft SQL Server offers several editions and licensing options to meet the needs of various types

and sizes of businesses. Here are some of the most common editions and licensing options available:

7

Enterprise Edition: This is the most comprehensive edition of SQL Server and offers advanced

features such as data warehousing, advanced analytics, and online transaction processing (OLTP). It

is licensed per core, with a minimum of four cores required.

Standard Edition: This edition is suitable for small to medium-sized businesses that require basic

database functionality. It includes features such as basic data management, security, and analytics. It

is licensed per core, with a minimum of four cores required.

Express Edition: This is a free, lightweight edition of SQL Server that is ideal for small-scale

applications and development purposes. It has some limitations on database size and resource

usage.

Developer Edition: This edition is designed for developers to use for building and testing

applications. It includes all the features of Enterprise Edition and is licensed per user.

Web Edition: This edition is designed for hosting web applications and is licensed per core, with a

minimum of four cores required.

SQL Server on Azure Virtual Machines: This option allows businesses to run SQL Server on virtual

machines hosted on the Microsoft Azure cloud. It is licensed per hour and includes all the features of

SQL Server Enterprise Edition.

In addition to these editions, Microsoft also offers various licensing models, including:

Per Core Licensing: This is the most common licensing model for SQL Server and is based on the

number of cores in the server that SQL Server is installed on.

Server + CAL Licensing: This model is based on the number of servers and the number of client

access licenses (CALs) required to access those servers.

Azure Hybrid Benefit: This licensing model allows businesses to use existing licenses for SQL Server

on Azure virtual machines and save up to 40% on licensing costs.

Overall, the choice of edition and licensing option depends on the specific needs and budget of the

business.

8

2. Relational Database Concepts
Relational databases are a type of database management system (DBMS) that store and manage

data in a tabular format, organized in rows and columns. Here are some key concepts related to

relational databases:

Tables: Relational databases store data in tables, which consist of rows and columns. Each row

represents a single record or instance of data, and each column represents a specific attribute or

field of that data.

Primary key: Each table in a relational database has one or more columns that uniquely identify

each row. This column or columns are known as the primary key. The primary key is used to link data

between tables.

Foreign key: A foreign key is a column or group of columns in one table that refers to the primary

key of another table. This allows for the creation of relationships between tables.

Normalization: Normalization is the process of organizing data in a database so that it is efficient

and reduces redundancy. This involves breaking down larger tables into smaller ones and

establishing relationships between them.

Indexes: Indexes are used to improve the performance of queries on a database. They provide a

way to quickly locate data based on specific criteria.

SQL: Structured Query Language (SQL) is a standard language used to manage and manipulate

relational databases. It is used to create, modify, and query databases.

Transactions: Transactions are used to ensure that database operations are performed reliably and

consistently. A transaction groups together a series of operations and ensures that they are either all

completed successfully or all rolled back if an error occurs.

ACID: ACID is an acronym for Atomicity, Consistency, Isolation, and Durability. These are the

properties that ensure that database transactions are reliable and consistent.

Relational databases are widely used in many industries and are essential for managing large

amounts of data efficiently and effectively.

9

• Understanding tables, columns, and rows

In SQL Server, a database consists of one or more tables, which are made up of columns and rows.

Here's a breakdown of each of these components:

Tables: A table is a collection of data that is organized into rows and columns. Tables are created

using the CREATE TABLE statement, and they have a name that uniquely identifies them within the

database. Tables are the primary objects that hold data in a database.

Columns: A column represents a single piece of data within a table. Each column has a name, a data

type, and other attributes that define how the data is stored and used. Common data types include

integers, strings, dates, and booleans. Columns are defined when a table is created, and they can be

added, removed, or modified using the ALTER TABLE statement.

Rows: A row, also known as a record, represents a single instance of data within a table. Each row

contains values for each column in the table, and the values must conform to the data types and

constraints defined for the columns. Rows are inserted into a table using the INSERT statement, and

they can be retrieved using the SELECT statement.

Together, tables, columns, and rows provide a powerful and flexible way to store and retrieve data

in SQL Server. They form the basic building blocks for databases and allow for the creation of

complex data structures that can be queried and manipulated using SQL.

• Primary keys and foreign keys

Primary keys and foreign keys are two key concepts in SQL Server and relational databases. Here's

what you need to know about each:

Primary key: A primary key is a column or group of columns in a table that uniquely identifies each

row in the table. The primary key constraint ensures that each value in the column or columns is

unique and that the column or columns cannot contain null values. In SQL Server, primary keys are

often created using the IDENTITY property, which generates a unique value for each row. Primary

keys are important because they provide a way to link data between tables and ensure data

integrity.

Foreign key: A foreign key is a column or group of columns in a table that refers to the primary key

of another table. A foreign key constraint ensures that the values in the column or columns match

the values in the primary key of the related table. Foreign keys are used to establish relationships

10

between tables and ensure referential integrity. In SQL Server, foreign keys are created using the

FOREIGN KEY constraint.

Here's an example of how primary keys and foreign keys work together. Let's say you have two

tables: Customers and Orders. The Customers table has a primary key of CustomerID, and the Orders

table has a foreign key of CustomerID that refers to the Customers table. This means that each row

in the Orders table is associated with a specific customer in the Customers table. When you insert a

new row into the Orders table, you must specify a valid value for the CustomerID column, which

ensures that the order is associated with an existing customer. If you try to insert a value that does

not exist in the Customers table, you will receive an error. This ensures that the data is consistent

and accurate.

Overall, primary keys and foreign keys are essential concepts in SQL Server and relational databases.

They ensure that data is organized, linked, and maintained properly, and they help to ensure data

integrity and consistency.

• Normalization and denormalization

Normalization and denormalization are two strategies for organizing data in SQL Server and other

relational databases.

Normalization: Normalization is the process of organizing data in a database to reduce redundancy

and improve data integrity. Normalization involves breaking down a large table into smaller tables

and creating relationships between them. This helps to eliminate data duplication and ensures that

data is consistent and accurate. There are several levels of normalization, each with its own set of

rules and guidelines. The most commonly used levels are first normal form (1NF), second normal

form (2NF), and third normal form (3NF).

Denormalization: Denormalization is the process of intentionally adding redundancy to a database

to improve performance. Denormalization involves combining two or more tables into a single table,

duplicating data across tables, or creating calculated columns that summarize data. This can improve

performance by reducing the number of joins required to retrieve data and by reducing the amount

of data that needs to be read from disk. However, denormalization can also lead to data

inconsistency if not done carefully.

When deciding whether to normalize or denormalize a database, it's important to consider the

trade-offs between data integrity and performance. Normalization can improve data integrity but

may result in slower query performance, while denormalization can improve query performance but

may make it harder to maintain data integrity. It's often a balancing act between these two goals,

and the optimal solution will depend on the specific requirements of the application and the data

being stored.

11

3. Basic SQL Syntax
SQL Server uses the SQL (Structured Query Language) syntax for creating, modifying, and querying

databases. Here's a brief overview of some basic SQL syntax in SQL Server:

Creating a database: To create a new database, use the CREATE DATABASE statement, followed by

the name of the database. For example:

CREATE DATABASE mydatabase;

Creating a table: To create a new table, use the CREATE TABLE statement, followed by the name of

the table and a list of columns and their data types. For example:

CREATE TABLE mytable (

 id INT PRIMARY KEY,

 name VARCHAR(50),

 age INT

);

Inserting data: To insert data into a table, use the INSERT INTO statement, followed by the name of

the table and the values to be inserted. For example:

INSERT INTO mytable (id, name, age) VALUES (1, 'John', 30);

Updating data: To update data in a table, use the UPDATE statement, followed by the name of the

table and the new values to be set. For example:

UPDATE mytable SET name = 'Jane' WHERE id = 1;

Deleting data: To delete data from a table, use the DELETE FROM statement, followed by the name

of the table and the conditions that specify which rows to delete. For example:

DELETE FROM mytable WHERE age > 40;

Selecting data: To retrieve data from a table, use the SELECT statement, followed by the columns to

retrieve and the name of the table. For example:

SELECT id, name, age FROM mytable;

12

These are just a few examples of the basic SQL syntax used in SQL Server. SQL is a powerful language

with many more features and capabilities, but these concepts are a good starting point for

beginners.

• SELECT statement

• WHERE clause

• ORDER BY clause

• GROUP BY clause

The SELECT statement is one of the most important and commonly used SQL statements in SQL

Server. It is used to retrieve data from one or more tables and can be customized to specify which

columns to retrieve, filter the results based on conditions, sort the results, and more. Here's an

overview of the basic syntax for the SELECT statement:

SELECT column1, column2, ... FROM table1

In this example, column1, column2, etc. are the names of the columns you want to retrieve, and

table1 is the name of the table you want to retrieve data from. You can also use the wildcard * to

retrieve all columns from a table:

SELECT * FROM table1

To filter the results based on conditions, use the WHERE clause:

SELECT column1, column2, ... FROM table1 WHERE condition

In this example, condition is a logical expression that evaluates to true or false, based on the values

in the table. You can use operators like =, <>, <, >, <=, >=, LIKE, and BETWEEN to create conditions.

To sort the results, use the ORDER BY clause:

SELECT column1, column2, ... FROM table1 ORDER BY column1 ASC/DESC, column2 ASC/DESC, ...

In this example, ASC and DESC specify whether to sort the results in ascending or descending order.

You can sort by one or more columns, in any order.

The GROUP BY clause is used in SQL Server to group rows that have the same values in one or more

columns. This is often used in combination with aggregate functions, such as SUM, COUNT, AVG,

MIN, or MAX, to calculate summary information for each group of rows.

13

Here's the basic syntax for using the GROUP BY clause in a SELECT statement:

SELECT column1, column2, ..., aggregate_function(columnN)

FROM table

WHERE condition

GROUP BY column1, column2, ...

In this example, column1, column2, etc. are the names of the columns you want to group by, and

aggregate_function(columnN) is the aggregate function you want to use to calculate summary

information for each group of rows. The WHERE clause is optional, but it can be used to filter the

rows before grouping.

For example, let's say you have a table called "orders" with columns "order_id", "customer_id",

"order_date", and "amount". You can use the GROUP BY clause to calculate the total amount of

orders for each customer:

SELECT customer_id, SUM(amount) as total_amount

FROM orders

GROUP BY customer_id

In this example, the SUM function is used to calculate the total amount of orders for each customer,

and the GROUP BY clause is used to group the rows by customer_id. The result will be a list of

customer_id and their respective total_amount.

It's important to note that any column used in the SELECT statement must either be in the GROUP

BY clause or used with an aggregate function. This is because when using the GROUP BY clause, SQL

Server creates groups of rows based on the unique combination of values in the specified columns,

and the aggregate function calculates the summary information for each group.

14

4. Data Manipulation Language (DML)
Data Manipulation Language (DML) is used to manipulate data stored in the database. In SQL Server,

the primary DML statements are INSERT, UPDATE, and DELETE.

INSERT: The INSERT statement is used to add new rows to a table. Here's an example:

INSERT INTO table_name (column1, column2, column3, ...)

VALUES (value1, value2, value3, ...);

In this example, table_name is the name of the table you want to insert data into, and column1,

column2, etc. are the names of the columns you want to insert data into. value1, value2, etc. are the

values you want to insert into the corresponding columns.

UPDATE: The UPDATE statement is used to modify existing rows in a table. Here's an example:

UPDATE table_name

SET column1 = value1, column2 = value2, ...

WHERE condition;

In this example, table_name is the name of the table you want to update, and column1, column2,

etc. are the names of the columns you want to update. value1, value2, etc. are the new values you

want to set for the corresponding columns. condition is a logical expression that specifies which

rows to update.

DELETE: The DELETE statement is used to remove rows from a table. Here's an example:

DELETE FROM table_name

WHERE condition;

In this example, table_name is the name of the table you want to delete rows from, and condition is

a logical expression that specifies which rows to delete.

It's important to note that these DML statements can be combined with other SQL statements, such

as SELECT, JOIN, and GROUP BY, to perform more complex data manipulations. Additionally,

transactions can be used to ensure that DML statements are executed in an all-or-nothing fashion,

meaning that if one statement fails, the entire transaction is rolled back.

15

5. Data Definition Language (DDL)
Data Definition Language (DDL) is used to define the structure of the database, including tables,

columns, constraints, and indexes. In SQL Server, the primary DDL statements are CREATE, ALTER,

and DROP.

CREATE: The CREATE statement is used to create new database objects, such as tables, views, and

indexes. Here's an example of creating a new table:

CREATE TABLE table_name (

 column1 datatype [constraint],

 column2 datatype [constraint],

 ...

);

In this example, table_name is the name of the table you want to create, and column1, column2,

etc. are the names and datatypes of the columns you want to create. Constraints, such as primary

keys, foreign keys, and check constraints, can also be added to the columns.

ALTER: The ALTER statement is used to modify existing database objects, such as tables, views, and

indexes. Here's an example of adding a new column to an existing table:

ALTER TABLE table_name

ADD column_name datatype [constraint];

In this example, table_name is the name of the table you want to modify, and column_name and

datatype are the names and datatypes of the new column you want to add. Constraints can also be

added to the new column.

DROP: The DROP statement is used to remove database objects, such as tables, views, and indexes.

Here's an example of dropping a table:

DROP TABLE table_name;

In this example, table_name is the name of the table you want to drop.

It's important to note that these DDL statements can have a significant impact on the database and

should be used with caution. Additionally, transactions can be used to ensure that DDL statements

are executed in an all-or-nothing fashion, meaning that if one statement fails, the entire transaction

is rolled back.

16

6. Querying Multiple Tables
Querying multiple tables in SQL Server is accomplished through JOIN operations. JOIN operations

allow you to combine rows from two or more tables based on a related column between them.

There are several types of JOIN operations in SQL Server, including:

INNER JOIN: Returns only the rows that have matching values in both tables. Here's an example:

SELECT column1, column2, ...

FROM table1

INNER JOIN table2

ON table1.column = table2.column;

In this example, table1 and table2 are the names of the two tables you want to join. column1,

column2, etc. are the columns you want to select from the joined tables. table1.column and

table2.column are the columns that the two tables have in common.

LEFT JOIN: Returns all the rows from the left table and the matching rows from the right table. If

there is no matching row in the right table, NULL values are returned. Here's an example:

SELECT column1, column2, ...

FROM table1

LEFT JOIN table2

ON table1.column = table2.column;

In this example, table1 and table2 are the names of the two tables you want to join. column1,

column2, etc. are the columns you want to select from the joined tables. table1.column and

table2.column are the columns that the two tables have in common.

RIGHT JOIN: Returns all the rows from the right table and the matching rows from the left table. If

there is no matching row in the left table, NULL values are returned. Here's an example:

SELECT column1, column2, ...

FROM table1

RIGHT JOIN table2

ON table1.column = table2.column;

17

In this example, table1 and table2 are the names of the two tables you want to join. column1,

column2, etc. are the columns you want to select from the joined tables. table1.column and

table2.column are the columns that the two tables have in common.

FULL OUTER JOIN: Returns all the rows from both tables, including the unmatched rows. If there is

no matching row in one of the tables, NULL values are returned. Here's an example:

SELECT column1, column2, ...

FROM table1

FULL OUTER JOIN table2

ON table1.column = table2.column;

In this example, table1 and table2 are the names of the two tables you want to join. column1,

column2, etc. are the columns you want to select from the joined tables. table1.column and

table2.column are the columns that the two tables have in common.

It's important to note that when joining tables, it's recommended to use aliases to make the query

more readable and to avoid column name conflicts. Additionally, it's important to use appropriate

indexes on the join columns to improve query performance.

18

7. Aggregate Functions
Aggregate functions in SQL Server are used to perform calculations on a set of values and return a

single value. These functions operate on a group of rows and return a single result for the entire

group. Here are some of the commonly used aggregate functions in SQL Server:

COUNT(): This function returns the number of rows that match the specified condition. If no

condition is specified, it returns the total number of rows in the table. Here's an example:

SELECT COUNT(column_name)

FROM table_name;

SUM(): This function returns the sum of the values in the specified column. Here's an example:

SELECT SUM(column_name)

FROM table_name;

AVG(): This function returns the average of the values in the specified column. Here's an example:

SELECT AVG(column_name)

FROM table_name;

MAX(): This function returns the maximum value in the specified column. Here's an example:

SELECT MAX(column_name)

FROM table_name;

MIN(): This function returns the minimum value in the specified column. Here's an example:

SELECT MIN(column_name)

FROM table_name;

Aggregate functions can also be used with the GROUP BY clause to group the results by one or more

columns. For example:

SELECT column_name, COUNT(*)

FROM table_name

GROUP BY column_name;

This query will return the number of rows for each unique value in column_name.

19

8. Subqueries
In SQL Server, a subquery is a query that is nested inside another query. A subquery can be used to

retrieve data that will be used in the main query as a condition to filter the results or to perform

calculations.

Here are some examples of how subqueries can be used in SQL Server:

Subquery as a condition in a WHERE clause:

SELECT column_name1, column_name2

FROM table_name

WHERE column_name1 IN (SELECT column_name1 FROM table_name2 WHERE column_name2 =

'value');

This query will return the column_name1 and column_name2 values from table_name where the

column_name1 values are also present in the result of the subquery, which returns all

column_name1 values from table_name2 where column_name2 is equal to 'value'.

Subquery as a derived table in a FROM clause:

SELECT derived_table.column_name1, SUM(derived_table.column_name2) AS total

FROM (SELECT column_name1, column_name2 FROM table_name) AS derived_table

GROUP BY derived_table.column_name1;

This query uses a subquery as a derived table to select column_name1 and column_name2 from

table_name. The derived table is then used to perform a GROUP BY and calculate the SUM of

column_name2 for each unique value of column_name1.

Subquery as a scalar expression:

SELECT column_name1, column_name2, (SELECT MAX(column_name3) FROM table_name2 WHERE

table_name2.column_name1 = table_name.column_name1) AS max_value

FROM table_name;

This query uses a subquery as a scalar expression to return the maximum value of column_name3

from table_name2 for each unique value of column_name1 in table_name.

Subqueries can be used in various other ways in SQL Server to achieve more complex querying

requirements. It is important to use subqueries judiciously as they can impact query performance if

not used properly.

20

9. Indexing
In SQL Server, indexing is a technique used to improve the performance of queries by creating

indexes on one or more columns in a table. An index is a data structure that contains a copy of the

data from a table or view, organized in a way that makes it more efficient to search and retrieve the

data.

Here are some key points about indexing in SQL Server:

Types of indexes: SQL Server supports several types of indexes, including clustered indexes,

nonclustered indexes, and full-text indexes. Clustered indexes define the physical order of the data

in a table, while nonclustered indexes provide a separate structure for faster searching of data. Full-

text indexes are used to perform fast text-based searches on large columns of text data.

Creating indexes: Indexes can be created using the CREATE INDEX statement. It is important to

carefully choose the columns to be indexed as too many indexes can adversely affect the

performance of write operations on the table.

Maintaining indexes: Indexes need to be maintained to ensure they remain effective over time.

This involves rebuilding or reorganizing indexes periodically to optimize their performance.

Using indexes: Indexes are used automatically by SQL Server when executing queries. The query

optimizer evaluates the query and determines the most efficient way to retrieve the required data

using the available indexes.

Monitoring index performance: SQL Server provides tools for monitoring index usage and

performance, including the Database Engine Tuning Advisor and the Dynamic Management Views.

Properly indexing tables can significantly improve the performance of queries in SQL Server.

However, it is important to carefully choose the columns to be indexed, and to monitor and maintain

the indexes over time to ensure they remain effective.

21

10. Stored Procedures
In SQL Server, a stored procedure is a precompiled collection of SQL statements and procedural logic

that is stored in the database as a named object. Stored procedures can be executed by users or

applications to perform specific tasks or operations on the database.

Here are some key features of stored procedures in SQL Server:

Creating stored procedures: Stored procedures are created using the CREATE PROCEDURE

statement. A stored procedure can have input and output parameters, which allow the procedure to

accept and return data to the caller.

Advantages of stored procedures: Stored procedures provide several advantages over ad-hoc SQL

statements, including improved performance, security, and code reusability. Stored procedures can

also be used to encapsulate complex business logic or data processing operations.

Executing stored procedures: Stored procedures are executed using the EXECUTE or EXEC

statement. The procedure can be called with input parameters, which are passed as arguments to

the procedure, and output parameters, which are used to return data to the caller.

Modifying and dropping stored procedures: Stored procedures can be modified using the ALTER

PROCEDURE statement, and dropped using the DROP PROCEDURE statement.

Debugging stored procedures: SQL Server provides tools for debugging stored procedures,

including the Transact-SQL Debugger and SQL Server Management Studio's Debug menu.

Stored procedures are a powerful tool for managing and manipulating data in SQL Server. They can

improve performance, security, and code reusability, and are widely used in enterprise-level

database applications.

22

11. Views
In SQL Server, a view is a virtual table that is based on the result of a SELECT statement. Views

provide a way to simplify complex queries and to provide a consistent interface to data stored in

multiple tables.

Here are some key features of views in SQL Server:

Creating views: Views are created using the CREATE VIEW statement. Views can include joins,

subqueries, and other SQL constructs.

Modifying and dropping views: Views can be modified using the ALTER VIEW statement, and

dropped using the DROP VIEW statement.

Advantages of views: Views provide several advantages over direct access to tables, including

simplified querying, improved security, and abstraction of database schema changes.

Using views: Views can be used in the same way as tables in SQL queries, and can be used as the

source for other views or for stored procedures.

Limitations of views: Views have some limitations in SQL Server, including restrictions on the types

of queries that can be used to create them, and performance issues when using complex queries or

large amounts of data.

Views are a useful tool for simplifying complex queries and abstracting database schema changes.

They can provide a consistent interface to data stored in multiple tables, and can be used to enforce

security restrictions on data access. However, it is important to be aware of the limitations of views

and to use them appropriately in SQL Server.

23

12. Transactions and Locking
In SQL Server, a transaction is a sequence of one or more database operations that are treated as a

single unit of work. Transactions are used to ensure the consistency and integrity of data in the

database, and to maintain data accuracy and correctness.

Here are some key features of transactions and locking in SQL Server:

Transaction states: Transactions in SQL Server have four states: active, committed, rolled back, and

partially committed.

ACID properties: Transactions in SQL Server follow the ACID properties: Atomicity, Consistency,

Isolation, and Durability.

Transaction isolation levels: SQL Server provides several transaction isolation levels, which control

the level of locking and concurrency in the database. These include Read Uncommitted, Read

Committed, Repeatable Read, and Serializable.

Locking: SQL Server uses locking to prevent multiple users from modifying the same data at the

same time. Locks can be acquired at various levels, such as row-level, page-level, or table-level.

Deadlocks: Deadlocks occur when two or more transactions are waiting for each other to release

locks. SQL Server provides a mechanism for detecting and resolving deadlocks.

Transactions and locking are essential components of database management in SQL Server. They

ensure the consistency and integrity of data, and provide a mechanism for controlling concurrency

and preventing data corruption. Understanding transactions and locking is important for designing

and implementing robust and scalable database applications in SQL Server.

24

13. Security
Security is a critical aspect of database management in SQL Server. It involves protecting the

confidentiality, integrity, and availability of data in the database, and controlling access to the

database by users and applications.

Here are some key features of security in SQL Server:

Authentication: SQL Server supports several authentication modes, including Windows

authentication, SQL Server authentication, and Azure Active Directory authentication.

Authentication is used to verify the identity of users who access the database.

Authorization: SQL Server provides a robust authorization system that controls access to database

objects and data. This includes granting and revoking permissions on objects, and creating database

roles to group users with similar permissions.

Auditing: SQL Server provides auditing features that allow database administrators to track and

monitor database activity, including user logins, database modifications, and security-related events.

Encryption: SQL Server supports several encryption options, including Transparent Data Encryption

(TDE), Cell-level Encryption, and Always Encrypted. Encryption is used to protect sensitive data in the

database from unauthorized access.

Compliance: SQL Server supports several compliance standards, including the General Data

Protection Regulation (GDPR), the Health Insurance Portability and Accountability Act (HIPAA), and

the Payment Card Industry Data Security Standard (PCI DSS). Compliance features help ensure that

the database is secure and meets regulatory requirements.

Security is a critical component of database management in SQL Server. It is important to design and

implement robust security measures to protect sensitive data from unauthorized access, and to

ensure that the database meets regulatory requirements. Understanding the security features and

best practices in SQL Server is essential for developing and deploying secure and compliant database

applications.

	1. Introduction to SQL Server
	Overview of database management systems
	DBMSs provide many benefits, including:
	• History and evolution of SQL Server

	2. Relational Database Concepts
	3. Basic SQL Syntax
	4. Data Manipulation Language (DML)
	5. Data Definition Language (DDL)
	6. Querying Multiple Tables
	7. Aggregate Functions
	8. Subqueries
	Subquery as a derived table in a FROM clause:

	9. Indexing
	10. Stored Procedures
	11. Views
	12. Transactions and Locking
	13. Security

